## Problem 1.28

Go over the steps from Equation (1.25) to (1.29) in the proof of conservation of momentum, but treat the case that $N=3$ and write out all the summations explicitly to be sure you understand the various manipulations.

## Solution

Suppose there are $N$ particles in a system. One of the particles, labelled $\alpha$, experiences a force from the remaining $N-1$ particles in addition to an external force.

$$
\text { Net Force on Particle } \alpha=\mathbf{F}_{\alpha}=\sum_{\substack{\beta=1 \\ \beta \neq \alpha}}^{N} \mathbf{F}_{\alpha \beta}+\mathbf{F}_{\alpha}^{\mathrm{ext}}
$$

If $N=3$, then

$$
\mathbf{F}_{\alpha}=\sum_{\substack{\beta=1 \\
\beta \neq \alpha}}^{3} \mathbf{F}_{\alpha \beta}+\mathbf{F}_{\alpha}^{\mathrm{ext}} \Rightarrow\left\{\begin{array}{l}
\mathbf{F}_{1}=\mathbf{F}_{12}+\mathbf{F}_{13}+\mathbf{F}_{1}^{\mathrm{ext}} \\
\mathbf{F}_{2}=\mathbf{F}_{21}+\mathbf{F}_{23}+\mathbf{F}_{2}^{\mathrm{ext}} \\
\mathbf{F}_{3}=\mathbf{F}_{31}+\mathbf{F}_{32}+\mathbf{F}_{3}^{\mathrm{ext}}
\end{array}\right.
$$

According to Newton's second law, the net force on a particle is equal to the rate of change of momentum.

$$
\left\{\begin{array}{l}
\frac{d \mathbf{p}_{1}}{d t}=\mathbf{F}_{12}+\mathbf{F}_{13}+\mathbf{F}_{1}^{\mathrm{ext}} \\
\frac{d \mathbf{p}_{2}}{d t}=\mathbf{F}_{21}+\mathbf{F}_{23}+\mathbf{F}_{2}^{\mathrm{ext}} \\
\frac{d \mathbf{p}_{3}}{d t}=\mathbf{F}_{31}+\mathbf{F}_{32}+\mathbf{F}_{3}^{\mathrm{ext}}
\end{array}\right.
$$

Add them together to get the rate of change of total momentum. By Newton's third law, $\mathbf{F}_{i j}+\mathbf{F}_{j i}=\mathbf{0}$.

$$
\begin{aligned}
\frac{d \mathbf{P}}{d t} & =\sum_{\beta=1}^{3} \frac{d \mathbf{p}_{\beta}}{d t} \\
& =\left(\mathbf{F}_{12}+\mathbf{F}_{13}+\mathbf{F}_{1}^{\mathrm{ext}}\right)+\left(\mathbf{F}_{21}+\mathbf{F}_{23}+\mathbf{F}_{2}^{\mathrm{ext}}\right)+\left(\mathbf{F}_{31}+\mathbf{F}_{32}+\mathbf{F}_{3}^{\mathrm{ext}}\right) \\
& =\underbrace{\left(\mathbf{F}_{12}+\mathbf{F}_{21}\right)}_{=\mathbf{0}}+\underbrace{\left(\mathbf{F}_{13}+\mathbf{F}_{31}\right)}_{=\mathbf{0}}+\underbrace{\left(\mathbf{F}_{23}+\mathbf{F}_{32}\right)}_{=\mathbf{0}}+\mathbf{F}_{1}^{\mathrm{ext}}+\mathbf{F}_{2}^{\mathrm{ext}}+\mathbf{F}_{3}^{\mathrm{ext}} \\
& =\mathbf{F}_{1}^{\mathrm{ext}}+\mathbf{F}_{2}^{\mathrm{ext}}+\mathbf{F}_{3}^{\mathrm{ext}}
\end{aligned}
$$

Therefore, if the net external force acting on the particles is zero,

$$
\frac{d \mathbf{P}}{d t}=\mathbf{0}
$$

then the total momentum is conserved: $\mathbf{P}_{\text {initial }}=\mathbf{P}_{\text {final }}=$ constant .

